Soal Latihan Perbandingan Trigonometri

Bimbel Jakarta Timur
By -
0



Berikut ini adalah Soal Latihan mengenai Perbandingan Trigonometri juga dengan jawaban dan pembahasan agar lebih mudah dimengerti caranya

Perbandingan trigonometri adalah perbandingan ukuran sisi-sisi suatu segitiga siku-siku apabila ditinjau dari salah satu sudut yang terdapat pada segitiga tersebut.


1. Besar sudut 210° sama dengan..... radian

a. 1½ 𝝅          b. 1⅓ 𝝅         c. 1¼ 𝝅          d. 1⅙ 𝝅

Pembahasan :
210° 
210° x 𝝅/180
1⅙ 𝝅
Jawaban : d

2. 0,3 𝝅 radian besarnya sama dengan .....
a. 45°            b. 54°           c. 60°             d. 72°

Pembahasan :

0,3 𝝅 radian

= 0,3 𝝅 x 180°/ 𝝅

= 54°
Jawaban : b


3. Perhatikan gambar  berikut !

Segitiga ABC di atas siku-siku di C. Pernyataan yang tidak benar berdasarkan segitiga tersebut adalah....
a. sin 𝝰 = BC/AB
b. sin 𝛽 = AC/AB
c. cos 𝝰 = AC/AB
d. tan 𝛽 = BC/AB

Pembahasan :

sin  = depan/miring

cos = samping /miring

tan = depan /samping

tinjau < 𝝰



sin 𝝰 = BC/AB (jawaban a benar)

cos 𝝰 = AC/AB (jawaban c benar)

tan 𝝰 = BC/AC


tinjau < 𝛽



sin 𝛽 = AC/AB (jawaban b benar)

cos 𝛽 = BC/AB

tan 𝛽 = AC/BC (jawaban d salah)

Jawaban : d



4. Perhatikan gambar  berikut !
Nilai sin 𝛽 adalah....
a. 2/5
b. 2/√13
c. 2/3
d. 3/√13

Pembahasan :

Tentukan sisi miring (AB)

AB2 = AC2 + BC2

AB2 = 22 + 32

AB2 =  4 + 9

AB2 = 13

AB = 13 cm

sin 𝛽 = AC/AB

= 2/√13

Jawaban : b



5. Jika A adalah sudut lancip dan sin A = 7/25, maka tan A =.....
a. 7/25          b. 24/25        c. 7/24           d. 24/7

Pembahasan :

sin = depan/miring
sin  A = 7/25, maka

panjang sisi depan = 7 dan

panjang sisi miring = 25

Tentukan panjang sisi samping dengan phytagoras

spg2 = mrg2 – dpn2

spg2 = 252 – 72

spg2 = 625 – 49

spg2 = 576

spg = 576 = 24

tan = depan/samping = 7/24

Jawaban : c



6. Diketahui sudut lancip P dengan nilai cos K = 8/17, maka nilai sec K adalah...
a. 15/17        b. 8/15          c. 15/8           d. 17/8

Pembahasan :

cos = samping/miring

cos K = 8/17, maka

panjang sisi samping = 8 dan

panjang sisi miring = 17

sec K = miring/samping

= 17/8

Jawaban : d



7. Jika titik P (-5,12), dan 𝜶 adalah sudut yang dibentuk OP dengan sumbu x positif, maka nilai cos  𝜶 adalah....
a. -5/12         b. -5/13         c. 12/13        d. 5/13

Pembahasan :

Perhatikan gambar !


P (-5,12), maka x = -5 dan y = 12

Tentukan nilai r dengan phytagoras

r2 = x2 + y2

r2 = -52 + 122

r2 = 25 + 144

r2 = 169, r = 169 = 13

cos  𝜶 = x/r

= -5/13

Jawaban : b



8. Jika titik Q (6, -8), dan 𝜶 adalah sudut yang dibentuk OQ dengan sumbu x positif, maka nilai cot 𝜶 adalah....
a. -3/4         b. -3/5         c. -4/3        d. 5/3

Pembahasan :

Perhatikan gambar !



Q (6,-8), maka x = 6 dan y = -8

cot  𝜶 = x/y

= -8/6

= -4/3

Jawaban : c



9. Perhatikan gambar  berikut !
Jika tan <ABD = 3/4, maka nilai cosec <BDC adalah....
a. 8/17          b. 15/17       c. 17/15         d. 17/8

Pembahasan :

tan <ABD = 3/4

AD/AB = 3/4

9/AB = 3/4

AB = 9 x 4 : 3

AB = 12

BD2 = AB2 + AD2

BD2 = 122 + 92

BD2 = 144 + 81

BD2 = 225

BD = 15 cm

DC2 = BD2 + BC2

DC2 = 152 + 82

DC2 = 225 + 64

DC2 = 289

DC = 17 cm 

cosec <BDC = miring/depan

= DC/BC

= 17/8

Jawaban : d



10. Diketahui segitiga KLM siku-siku di L. Jika nilai sin M = a, maka nilai tan K adalah...








Pembahasan :

sin M = a

depan/miring = a/1

KL/KM = a/1

maka KL = a dan KM = 1


 






Tentukan LM dengan phytagoras

KM2 = KL2 + LM2

12 = a2 + LM2

LM2 = 1 – a2



tan K = depan/samping

tan K = LM/KL





Jawaban : b



11. Diketahui nilai sin A = 3/5 dan sudut A berada di kwadran II. Nilai dari  adalah....
a. -17/11
b. -17/15
c. 11/17
d. 15/17

Pembahasan : 

sin A = 3/5

y/r = 3/5

Di kwadran II

x bernilai negatif

y bernilai positif

r2 = x2 + y2

52 = x2 + 32

25 = x2 + 9

x2 = 25 – 9 = 16

x = 16 = - 4 (kwadran II)

cos A = x/r = -4/5

tan A = y/x = -3/4

= 2(-4/5) – (-3/4)

   3(3/5) + (-3/4)

= -8/5 + 3/4

    9/5 – 3/4

= -32 + 15

    36 – 15

= -17/11

Jawaban : a



12. Perhatikan gambar  berikut !

Jika besar <C adalah tan 60°, maka nilai dari 1/3 BC - 1/2 AC = ..... cm
a. 0               b. 1             c. 2                 d. 3

Pembahasan : 

tan 60° = 3

AB/AC  = √3

6√3/AC = √3

AC = 6√3 : √3 = 6 cm

 

sin 60° = 1/2 √3

AB/BC  = 1/2 √3

6 √3/BC = 1/2 √3

BC = 6 √3 : 1/2 √3 = 12 cm

1/3 BC - 1/2 AC

= 1/3 (12) – 1/2 (6)

= 4 – 3 = 1

Jawaban : b



13. Diketahui segitiga PQR siku-siku di Q. Jika PQ = 4√3 cm dan PR = 8 cm, maka besar <P adalah....
a. 30°      b. 45°        c. 60°         d.  9 

Pembahasan :
Perhatikan gambar
PQ adalah sisi samping dari <P dan PR adalah sisi miring, maka
cos P = samping/miring
        = PQ/PR
         = 4√3/8
        = √3/2 atau 1/2√3
arc cos 1/2√3 = 30°  
Jawaban : a


14. Perhatikan gambar  berikut !
Diketahui PQS adalah segitiga siku-siku di P dengan besar sudut <PQS adalah sin 30°. Jika segitiga QRS siku-siku di R dan QR = RS, maka panjang SR adalah..... cm
a. 5√2 cm      b. 5√3 cm     c. 10 cm        d. 10√2 cm

Pembahasan :
Tinjau segitiga PQS untuk menentukan panjang QS
sin 30° = PS/QS
0,5 = 5/QS
QS = 5/0,5 
QS = 10 cm

Perhatikan, segitiga QRS merupakan segitiga siku-siku sama kaki dimana QR = RS.
Maka besar <SQR = <QSR = 45°
sin <SQR = SR/QS
sin 45° = SR/10
√2/2 = SR/10
SR = √2/2 x 10
SR = 5√2 cm
Jawaban : a

15. 
Nilai dari sin 60°. sin 30° + cos 60°. cos 30° = .....
a. 0             b. 1/2√3         c. 1                 d. √3

Pembahasan :
sin 60°. sin 30° + cos 60°. cos 30°
√3/2 . 1/2 + 1/2 . √3/2
√3/4 + √3/4
√3/2
1/2√3
Jawaban : b

16. Nilai dari sin 60°.tan 60° - sin 30°. tan 45° = .....
a. ½              b. 1             c. ½√3           d. √3

Pembahasan :
sin 60°.tan 60° - sin 30°. tan 45°
√3/2 . √3 - 1/2 . 1
= 3/2 - 1/2
= 2/2 = 1
Jawaban : b


17. Sebuah tangga yang panjangnya √3 m bersandar pada dinding. Jika sudut yang dibentuk oleh tangga dan lantai adalah 60°, maka jarak ujung tangga pada dinding dengan lantai adalah.... m
a. 1               b. 1,5              c. 2               d. 3

Pembahasan :

sin 60° = y/
√3
√3/2 = y/√3
y = √3/2 . √3
y = 1,5 m
Jawaban : b


18. Jika A adalah sudut di kwadran III dan cot A = √3, maka sin A = .....
a. - 1/2√3      b. - 1/2          c. 1/2             d. 1/2√3

Pembahasan :
A = arc cot √3 =  30°
kwadran III = 180°  + 30° 
nilai sin di kwadran III negatif
sin (180 + 30) = - sin 30° = - 1/2 
Jawaban : b

19. Nilai dari cosec 60°.tan 60° + sec 60° . cot 45° =....

a. -1 1/3           b. – 1/3              c. 1 1/3        d. 2 2/3


Pembahasan :
cosec 60°.tan 60° + sec 60° . cot 45°
= 2/√3 . √3 +  2 . 1
= 2/3 + 2
2/3
Jawaban : d

20. Seorang petugas mercusuar melihat dua kapal laut pada posisi yang berbeda. Petugas melihat kapal A dengan sudut depresi 
60° dan kapal B dengan sudut depresi 30°. Jika tinggi mercusuar 34 m dan nilai √3 = 1,7, maka jarak antara kapal A dan kapal B adalah.... m
a. 17 m           b. 34 m              c. 40 m           d. 60 m   

Pembahasan :


Jarak dari mercusuar ke kapal A (MA)
tan 60° = 34/MA
√3 = 34/MA
MA = 34/√3 = 34/1,7
MA = 20 m

Jarak dari mercusuar ke kapal B (MB)
tan 30° = 34/MB
√3/3 = 34/MB
MB = 34.3/√3 = 34.3/1,7
MB = 60 m

Jarak antara kapal A dan B
AB = MB - MA
     = 60 - 20
     = 40 m
Jawaban : c

21. ABC adalah segitiga sama kaki dengan panjang AB = BC = 12 cm. Jika besar < B = 120°, maka luas segitiga ABC tersebut adalah....
a. 36 cm²        b. 36√2 cm²        c. 36√3  cm²         d. 72 cm² 

Pembahasan :
Perhatikan gambar berikut

ABC adalah segitiga sama kaki. Jika besar <B =12
0°, maka besar <A = <C.
<A = (180 - 120) : 2 = 30°

Tarik garis BD yang tegak lurus AC

Tinjau segitiga ADB untuk menentukan panjang alas dan tinggi segitiga ABC
sin A = BD/AB
0,5 = BD/12
BD = 12 . 0,5 = 6 cm
tinggi = 6 cm

cos A = AD/AB
√3/2 = AD/12
AD = 12 . √3/2 = 6√3 cm
alas = AC = 12√3 cm

Luas segitiga 
= 1/2 x a x t
= 1/2 x 12√3 x 6
= 36√3 cm²
Jawaban : c 

22. Nilai 2.cos 150°- 4 . sin 315° = .....
a. √2 √3
b. √3 √2
c. 2√2 √3
d. 2√3 √2

Pembahasan :
2.cos 150°- 4 . sin 315° 
= 2 . cos (180° - 30°) - 4 . sin (360° - 45°)
= 2 . (- cos 30°) - 4 . (-sin 45°)
= 2 . (-√3/2) - 4 . (-√2/2)
= - √3 + 2√2
2√2 √3
Jawaban : c

23. Jika diketahui sin 5x° = cos (2x+6)°, nilai x yang memenuhi adalah....
a. 12°           b. 14°             c. 15°              d. 17°

Pembahasan :
Ubah bentuk sin menjadi cos dengan rumus sin x = cos (90 - x)°
sin 5x° = cos (2x+6)°
cos (90 - 5x)° = cos (2x+6)°
90 - 5x = 2x + 6
90 - 6 = 2x + 5x
84 = 7x
x = 84 : 7
x = 12°
Jawaban : a


24.  tan 45° .  sec 110°  = .....
    cot 120° . sec 70°
a. - 1/3√3      b. - √3          c. 1/3√3           d. √3

Pembahasan :
 tan 45° .  sec 110°  
 cot 120° . sec 70°

     1 .   sec (180 - 70)°  
   cot (180 - 60)° . sec 70°

   1 .   ( - sec 70°)  
   - cot 60° . sec 70°

         - sec 70°     
   - 
1/3√3  . sec 70°

√3
Jawaban : d


25. 
  sin 135° .  cot 200°  = .....
       cos 120° .  cot 160°
a. - 1/3√2      b. - √2          c. 1/3√2           d. √2

Pembahasan :
  sin 135° .  cot 200°  
 cos 120° .  cot 160°

  sin (180 - 45)° .  cot (180 + 20)°  
    cos (180 - 60)° .  cot (180 - 20)°


     sin 45° .  cot  20°  
   - cos 60° .  (-cot  20°)

  1/2 √2 . cot  20°  
   - 1/2 .  (-cot  20°)
√2
Jawaban : d

Posting Komentar

0Komentar

Posting Komentar (0)