Barisan Dan Deret

Bimbel Jakarta Timur
By -
1



Disini Bimbel Jakarta Timur akan menjelaskan secara rinci dan jelas tentang Barisan dan Deret. Barisan bilangan itu adalah bilangan yang tersusun menurut aturan tertentu, sehingga suku-sukunya merupakan fungsi dari n, n ∈ bilangan asli



Barisan aritmatika adalah suatu barisan dengan selisih atau beda antara dua suku yang berurutan selalu tetap.

Barisan geometri adalah suatu barisan dengan rasio (pembanding/pengali) antara dua suku yang berurutan selalu tetap.

Deret bilangan adalah penjumlahan dari suku-suku barisan


Barisan Dan Deret Aritmatika


Ciri dari barisan aritmatika adalah beda atau selisih dari dua suku berurutan selalu tetap.

a  =suku pertama
b  =beda
Un=suku ke-n
Sn=jumlah n suku pertama


Bimbel Jakarta Timur | Bimbel Diah Jakarta Timur | WA : +6285875969990
Barisan Aritmatika


Jika di antara bilangan a dan p disisipkan n buah bilangan dan membentuk sebuah barisan/deret aritmatika, maka beda barisan/deret tersebut adalah: b=(p -a)/(n+1).

Untuk n ganjil, maka suku tengahnya (Ut) adalah : Ut=(a+ Un)/2

Un=Sn - Sn-1


Barisan Dan Deret Geometri


Ciri dari barisan geometri adalah rasio (pembanding/pengali) antara dua suku yang berurutan selalu tetap.

a  =suku pertama
r  =rasio
Un=suku ke-n
Sn=jumlah n suku pertama
Untuk n ganjil, maka suku tengahnya (Ut) adalah : Ut=√(a.Un)



Bimbel Jakarta Timur | Bimbel Diah Jakarta Timur | WA : +6285875969990
Barisan Geometri


Deret geometri tak hingga adalah deret geometri yang penjumlahanya sampai suku tak hingga.

Deret geometri mempunyai jumlah/limit/konvergen jika -1 < r < 1


Bimbel Jakarta Timur | Bimbel Diah Jakarta Timur | WA : +6285875969990
Deret Geometri


Contoh Soal Dan Pembahasan


1. Tentukan 3 suku berikutnya dari barisan  5, 8, 11, 14,...

Penyelesaian :
Pola barisan bilangan diatas adalah bertambah 3 dari sulu sebelumnya.
Jadi 3 suku berikutnya dari barisan bilangan di atas adalah 17, 20, 23


2. Tentukan 3 suku pertama dari barisan yang ditentukan Un=3n - 5

Penyelesaian :
Substitusi n=1,2,3
Un=3n - 5
U1=3.1 - 5=-2
U2=3.2 - 5= 1
U3=3.3 - 5= 4
Jadi 3 suku pertama dari barisan tersebut adalah -2, 1, 4

3. Tentukan rumus suku ke-n dari barisan bilangan 5, 9, 13, 14, ...

Penyelesaian :
Suku pertama a=5
Beda barisan=U2 -U1=4
Un=a + (n - 1)b
Un=5 + (n - 1).4=5 + 4n - 4
Un=4n + 1

4. Hitung jumlah 6 suku pertama dari 3, 8, 13, 18,...

Penyelesaian :
a=3, b=5, n=6

Sn=n/2 [2a + (n - 1).b]
Sn=6/2 [2.3 + (6-1).5]  =3 (6+25)=3. 31=93 

5. Suku ke 3 dan suku ke 7 suatu barisan aritmatika berturut-turut adalah 8 dan 28. Tentukan jumlah 10 suku pertama barisan tersebut!

Penyelesaian :
U3=a + (3-1)b=a + 2b= 8
U7=a + (7-1)b=a + 6b=28  -
                                -4b=-20
                                   b=5
cara cepat b=U7 - U3
                           7 - 3 

a + 2b=8
a + 2.5=8
a + 10=8
a=8-10=-2


Sn=n/2 [2a + (n - 1).b]
Sn=10/2 [2.(-2) + (10 -1).5]=5 [-4 + 45]=5 . 41=205

6. Jumlah n suku pertama suatu deret aritmatika adalah Sn=n² + 3n. Suku kelima barisan tersebut adalah...

Penyelesaian :
Un=Sn - Sn-1 =S5 - S4
    =[ 5² + 3.5] - [4² + 3.4]
    =[25 + 15] - [16 + 12]
    =40 - 28=12

7. Di antara bilangan 9 dan 111 disisipkan sebanyak 33 bilangan, sehingga bilangan semula dan bilangan-bilangan yang disisipkan membentuk barisan aritmatika. Tentukan suku kedua puluh satu barisan tersebut adalah....

Penyelesaian :
b=(111 - 9)/ (33+1)=102/34=3
Un=a + (n-1)b=9 + (21-1).3=9 + 60=69


8. Jumlah n suku pertama suatu barisan aritmatika dirumuskan dengan Sn=n² -3n. Maka suku ke-10 barisan tersebut adalah...

Un=Sn - Sn-1
U10=S10 - S9
      =(10² -3.10) - (9² -3.9)
      =(100 -30) - (81-27)
      =70 - 54=16


9. Tentukan suku ke-n dari barisan berikut 4,12, 36, 108, ...

Penyelesaian :

a=4, r=12/4=3
Un=a.rn-1
Un=4.3n-1


10. Tiga bilangan membentuk barisan geometri. Jika hasil kali ketiga bilangan adalah 8.000, dan jumlah bilangan terkecil dan terbesar adalah 104. Maka rasio barisan tersebut adalah...

Penyelesaian :

U1.U2.U3=8.000
a.ar.ar²=8.000
a³r³=8.000
(ar)³=20³
ar=20, a=20/r
a + ar²=104
a (1+ r²)=104
20/r (1+r²)=104
20 (1+r²)=104.r
20 + 20r²=104r
20r² - 104r + 20=0..... (:) 4
5r² - 26r + 5=0
(5r -1) (r-5)=0
r=1/5 atau r=5
11. n - 1, n + 2, 3n adalah tiga suku pertama suatu barisan geometri. Jika n adalah bilangan
bulat positif, tentukanlah suku ke-empat barisan tersebut.

Penyelesaian :

ciri barisan geometri adalah rasio, dimana r=U2/U1=U3/U2=U4/U3 ....
maka U2/U1=U3/U2
(n+2)/(n-1)=3n/(n+2).... kali silang
(n+2)(n+2)=3n(n-1)
n²+4n+4=3n² -3n
0=3n² -n² -3n - 4n - 4
0=2n² - 7n -4
0=(2n+1) (n-4)

2n+1=0
n=-1/2 (tidak memenuhi)
n-4=0
n=4 (memenuhi)
maka suku pertama adalah n-1=4-1=3
rasio adalah U2/U1=(n+2)/(n-1)=(4+2)/(4-1)=2
U4=a.r³
=3.2³=3.8=24

12. Suatu barisan geometri terdiri dari lima suku. Jika suku pertama barisan tersebut adalah 4
dan suku terakhirnya adalah 256, tentukan suku ke-3 barisan geometri tersebut.

Penyelesaian :
a=4, U5=256
Un=a.rn-1
U5=a.r4
256=4.r4
r4 =256/4=64
r=∜64
r=2√2

U3=a.r²
    =4.(2√2)²
    =4.8=32

13. .Diketahui deret geometri 3 + 3² + 3³ + ...+ 3=363. Banyaknya suku pada deret tersebut adalah...

Penyelesaian :

a=3, r=3, Sn=363
Sn      =a(.rn-1)/ (r-1)
363      =3( 3 -1)/(3-1)
363      =3( 3 -1)/2
363.2/3=  3 -1
242      = 3n -1
243       = 3n 
n          =5

14. Suku ke-2 dan suku ke-5 suatu barisan geometri adalah 14 dan 112. Suku ke enam barisan geometri tersebut adalah...

Penyelesaian :

U2=a.r=14
U5=a.r4 =112
     ar.r³=112
     14..r³=112
     .r³=112/14=8
      r=∛8=2
ar  =14
a.2=14
a    =14/2=7
U6=a.r5
    =7.25
    =7.32
    =224


15. Tiga bilangan membentuk barisan geometri naik. Hasil kali dan jumlah bilangan tersebut berturut-turut adalah 512 dan 28. Suku ketiga barisan tersebut adalah...

Penyelesaian :

Hasil kali adalah  512
U1.U2.U3        =512
(U2/r)(U2)(U2.r) =512
(U2)³                =512
U2                  =∛512=8

Jumlah adalah 28
U1 + U2 + U3=28
U2/r + U2 + U2.r=28
8/r + 8 + 8r=28 
8r - 20 + 8/r=0 .... (x) r/4
2r² -5r + 2=0
(2r-1)(r-2)=0
2r-1=0
2r=1
r=1/2, atau
r-2=0
r=2
Karena barisan tersebut adalah barisan geometri naik maka r=2
U3=U2.r=8.2=16

16. Jumlah tak hingga suatu deret geometri adalah 48, sedangkan jumlah suku-suku bernomor genapnya sama dengan 16. Berapakah rasio dari deret geometri tersebut?

Penyelesaian :

Sganjil + Sgenap=S∽
Sganjil + 16=48
Sganjil=48 - 16=32

r=Sgenap  =16 =1
     Sganjil       32    2

17. Diketahui suatu deret geometri tak hingga 3 + 1,5 + 0,75 ....
Tentukanlah Jumlah tak hingga suku ganjil deret tersebut !

Penyelesaian :

a=3, 
r=1,5/3=0.5

Sganjil=   a      
              1 - r²
        =   3   
              1-0,5²
        =   3   
               0,75
        =4

18. Pada bulan pertama Daffa menabung sebesar Rp 150.000,00, pada bulan kedua Rp 170.000,00 demikian seterusnya tiap bulan jumlah yang ditabung bertambah Rp 20.000,00. Besar tabungan Daffa setelah 1 tahun adalah...

Penyelesaian :

a=150.000
b= 20.000
n=12 bulan

S12=12/2 (2x150.000 + (12-1) 20.000)
      =6 (300.000 + 220.000)
      =6 (420.000)
      =2.520.000

Jadi jumlah seluruh tabungan Daffa selama 1 tahun adalah Rp 2.520.000,00

19. Seutas tali dibagi menjadi enam potong dengan tiap bagiannya membentuk barisan geometri. Jika potongan terpendek adalah 2 cm dan potongan terpanjang adalah 486 cm, maka panjang tali semula adalah...

Penyelesaian :

a=2
U6  =486
a.r =486
2..r5 =486
r5      =486/2=243
r      =3

S6=a (r6 -1)
           r-1
    = 2(36 -1)
           3-1
    = 2 (729-1)
             2
    =728

20. Sebuah bola dijatuhkan ke lantai dari tempat yang ketinggiannya 1,5 meter. Setiap kali bola memantul, bola mencapai ketinggian yang sama dengan 2/3 dari ketinggian yang dicapai sebelumnya. Panjang lintasan bola sejak dilemparkan sampai terhenti adalah...

Penyelesaian :


Bimbel Jakarta Timur | Bimbel Diah Jakarta Timur | WA : +6285875969990
Soal Nomer 20


  Sturun=1,5 + 1 +2/3 + 4/9 + ... 
            =  a     =  1,5    =  1,5    =4,5
                1-r       1-2/3        1/3

Snaik=1 + 2/3 + 4/9 +...
          =   a     =   1    =   1    =3
              1-r      1-2/3     1/3

Panjang lintasan=Sturun + Snaik=4,5 + 3=7,5 m

Posting Komentar

1Komentar

Posting Komentar